Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: covidwho-20237163

ABSTRACT

Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2 , COVID-19/diagnosis , Gold , Antibodies, Viral , Immunoglobulin A , Sensitivity and Specificity , Computer Simulation , Immunoassay/methods , COVID-19 Testing
2.
Int J Biol Macromol ; 242(Pt 4): 125186, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-20231053

ABSTRACT

Lateral flow immunoassay (LFIA) is widely used as a rapid point-of-care testing (POCT) technique in food safety, veterinary and clinical detection on account of the accessible, fast and low-cost characteristics. After the outbreak of the coronavirus disease 2019 (COVID-19), different types of LFIAs have attracted considerable interest because of their ability of providing immediate diagnosis directly to users, thereby effectively controlling the outbreak. Based on the introduction of the principles and key components of LFIAs, this review focuses on the major detection formats of LFIAs for antigens, antibodies and haptens. With the rapid innovation of detection technologies, new trends of novel labels, multiplex and digital assays are increasingly integrated with LFIAs. Therefore, this review will also introduce the development of new trends of LFIAs as well as its future perspectives.


Subject(s)
COVID-19 , Haptens , Humans , COVID-19/diagnosis , Antibodies , Antigens , Immunoassay/methods
3.
Clin Chem Lab Med ; 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2232584

ABSTRACT

Due to the many technical limitations of molecular biology, the possibility to sustain enormous volumes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic testing relies strongly on the use of antigen rapid diagnostic tests (Ag-RDTs). Besides a limited analytical sensitivity, the manually intensive test procedures needed for performing these tests, very often performed by unskilled personnel or by the patients themselves, may contribute to considerably impair their diagnostic accuracy. We provide here an updated overview on the leading preanalytical drawbacks that may impair SARS-CoV-2 Ag-RDT accuracy, and which encompass lower diagnostic sensitivity in certain age groups, in asymptomatic subjects and those with a longer time from symptoms onset, in vaccine recipients, in individuals not appropriately trained to their usage, in those recently using oral or nasal virucidal agents, in oropharyngeal swabs and saliva, as well as in circumstances when instructions provided by the manufacturers are unclear, incomplete or scarcely readable and intelligible. Acknowledging these important preanalytical limitations will lead the way to a better, more clinically efficient and even safer use of this important technology, which represents an extremely valuable resource for management of the ongoing pandemic.

4.
Diagn Microbiol Infect Dis ; 105(4): 115900, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2178019

ABSTRACT

Lateral flow immunoassays (LFIA) for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies are used for population surveillance and potentially individual risk assessment. The performance of the SureScreen Diagnostics LFIA targeting the spike protein was evaluated in comparison with 3 automated assays (Abbott Alinity-i SARS-CoV-2 IgG, DiaSorin Liaison® SARS-CoV-2 S1/S2 IgG, Wantai SARS-CoV-2 Ab ELISA). We assessed sensitivity using 110 serum samples from PCR confirmed COVID-19 infected patients. Specificity was evaluated using 120 prepandemic samples, including potential cross-reactive antibodies samples. Sensitivity ranged between 93.3% and 98.7% on samples collected >14 days postsymptom onset. All assays achieved a specificity >98%. Moreover, its performance seems not to be affected by Alpha, Beta or Delta variants over a wide range of antibody titers. The latter showed a very good agreement with the Wantai and the Abbott assays and a substantial agreement with the DiaSorin assay. Our data demonstrate the good clinical performance of the SureScreen Diagnostics LFIA for SARS-CoV-2 seroprevalence screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19 Testing , Seroepidemiologic Studies , Clinical Laboratory Techniques , Sensitivity and Specificity , Immunoassay , Antibodies, Viral , Immunoglobulin G
5.
J Clin Med ; 11(24)2022 Dec 19.
Article in English | MEDLINE | ID: covidwho-2166621

ABSTRACT

BACKGROUND: The duration of the protective efficacy of vaccines against SARS-CoV-2 is unknown. Thus, an evaluation of the clinical performance of available tests is required. OBJECTIVES: To evaluate the clinical performance of LFIA immunoassay compared to ELIA and CLIA immunoassays available in Europe for the detection of IgG antibodies generated by mRNA vaccines against SARS-CoV-2. METHODS: Two automated immunoassays (the EUROIMMUN anti-SARS-CoV-2 IgG S1 ELISA and the LIAISON de Diasorin anti-SARS-CoV-2 IgG S1/S2 test) and a lateral flow immunoassay (the Livzon LFIA anti-SARS-CoV-2 IgG S test) were tested. We analyzed 300 samples distributed in three groups: 100 subjects aged over 18 years and under 45 years, 100 subjects aged between 45 and 65 years, and 100 subjects aged over 65 years. The samples were collected before vaccination; at 21 days; and then at 1, 2, 3, and 6 months after vaccination. The sensitivity, specificity, positive predictive value, negative predictive value, positive probability quotient, negative probability quotient, and concordance (kappa index) were calculated for each serological test. RESULTS: The maximum sensitivity values for IgG were 98.7%, 98.1%, and 97.8% for the EUROIMMUN ELISA, Abbott CLIA, and Livzon LFIA tests, respectively, and the maximum specificity values for IgG were 99.4%, 99.9%%, and 98.4% for the ELISA, CLIA, and LFIA tests, respectively, at the third month after vaccination, representing a decrease in the antibody levels after the sixth month. The best agreement was observed between the ELISA and CLIA tests at 100% (k = 1.00). The agreement between the ELIA, CLIA, and LFIA tests was 99% (k = 0.964) at the second and third month after vaccination. Seroconversion was faster and more durable in the younger age groups. CONCLUSION: Our study examined the equivalent and homogeneous clinical performance for IgG of three immunoassays after vaccination and found LFIA to be the most cost-effective, reliable, and accurate for routine use in population seroconversion and seroprevalence studies.

6.
Clin Chim Acta ; 539: 237-243, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2165126

ABSTRACT

BACKGROUND: Nucleic acid detection represents limitations due to its false-negative rate and technical complexity in the COVID-19 pandemic. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests are widely spread all over the world presently. However, there is no report on the effectiveness of anti-SARS-CoV-2 antibody testing methods in China. METHODS: We gathered 10776 serum samples from close contacts of the SARS-CoV-2 infections in Fujian of China and used 2 chemiluminescence immunoassays (Wantai Bio., Yahuilong Bio.) and 2 lateral flow immunoassays (Lizhu Bio. and Dongfang Bio.) to perform the anti-SARS-CoV-2 antibody tests in China. RESULTS: The 4 antibody tests have great diagnostic value for infected or uninfected, especially in the neutralizing antibodies tests, the AUC can reach 0.939 (Wantai Bio.) and 0.916 (Yahuilong Bio.). Furthermore, we used pseudoviruses and euvirus neutralization assay to validate the effectiveness of these antibody test, the results of pseudoviruses neutralization assay or euvirus neutralization assay shows a considerable correlation with the 4 antibody detection respectively, particularly in euvirus neutralization assay, neutralizing antibodies detected by Wantai Bio. or Yahuilong Bio., the correlation can get the level of 0.93 or 0.82. CONCLUSIONS: The findings of this study demonstrate that the detections of antibodies have profound value in the diagnosis of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Pandemics , Antibodies, Viral , Antibodies, Neutralizing
7.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1911490

ABSTRACT

Lateral flow immunoassays for detecting biomarkers in body fluids are simple, quick, inexpensive point-of-care tests widely used in disease surveillance, such as during the coronavirus disease 2019 (COVID-19) pandemic. Improvements in sensitivity would increase their utility in healthcare, food safety, and environmental control. Recently, biofunctional magnetic nanoclusters have been used to selectively label target proteins, which allows their detection and quantification with a magneto-inductive sensor. This type of detector is easily integrated with the lateral flow immunoassay format. Pneumolysin is a cholesterol-dependent cytolysin and one of the most important protein virulence factors of pneumonia produced by Streptococcus pneumoniae. It is recognized as an important biomarker for diagnosis in urine samples. Pneumonia is the infectious disease that causes the most deaths globally, especially among children under five years and adults over 65 years, most of them in low- and middle-income countries. There especially, a rapid diagnostic urine test for pneumococcal pneumonia with high sensitivity and specificity would be helpful in primary care. In this work, a lateral flow immunoassay with magnetic nanoclusters conjugated to anti-pneumolysin antibodies was combined with two strategies to increase the technique's performance. First, magnetic concentration of the protein before the immunoassay was followed by quantification by means of a mobile telephone camera, and the inductive sensor resulted in detection limits as low as 0.57 ng (telephone camera) and 0.24 ng (inductive sensor) of pneumolysin per milliliter. Second, magnetic relocation of the particles within the test strip after the immunoassay was completed increased the detected signal by 20%. Such results obtained with portable devices are promising when compared to non-portable conventional pneumolysin detection techniques such as enzyme-linked immunosorbent assays. The combination and optimization of these approaches would have excellent application in point-of-care biodetection to reduce antibiotic misuse, hospitalizations, and deaths from community-acquired pneumonia.

8.
Talanta ; 244: 123409, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1768561

ABSTRACT

More than six billion tests for COVID-19 has been already performed in the world. The testing for SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) virus and corresponding human antibodies is essential not only for diagnostics and treatment of the infection by medical institutions, but also as a pre-requisite for major semi-normal economic and social activities such as international flights, off line work and study in offices, access to malls, sport and social events. Accuracy, sensitivity, specificity, time to results and cost per test are essential parameters of those tests and even minimal improvement in any of them may have noticeable impact on life in the many countries of the world. We described, analyzed and compared methods of COVID-19 detection, while representing their parameters in 22 tables. Also, we compared test performance of some FDA approved test kits with clinical performance of some non-FDA approved methods just described in scientific literature. RT-PCR still remains a golden standard in detection of the virus, but a pressing need for alternative less expensive, more rapid, point of care methods is evident. Those methods that may eventually get developed to satisfy this need are explained, discussed, quantitatively compared. The review has a bioanalytical chemistry prospective, but it may be interesting for a broader circle of readers who are interested in understanding and improvement of COVID-19 testing, helping eventually to leave COVID-19 pandemic in the past.


Subject(s)
COVID-19 Testing , COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Pandemics , Prospective Studies , SARS-CoV-2 , Sensitivity and Specificity
9.
Nanomaterials (Basel) ; 12(2)2022 Jan 08.
Article in English | MEDLINE | ID: covidwho-1637239

ABSTRACT

Today, public health is one of the most important challenges in society. Cancer is the leading cause of death, so early diagnosis and localized treatments that minimize side effects are a priority. Magnetic nanoparticles have shown great potential as magnetic resonance imaging contrast agents, detection tags for in vitro biosensing, and mediators of heating in magnetic hyperthermia. One of the critical characteristics of nanoparticles to adjust to the biomedical needs of each application is their polymeric coating. Fatty acid coatings are known to contribute to colloidal stability and good surface crystalline quality. While monolayer coatings make the particles hydrophobic, a fatty acid double-layer renders them hydrophilic, and therefore suitable for use in body fluids. In addition, they provide the particles with functional chemical groups that allow their bioconjugation. This work analyzes three types of self-assembled bilayer fatty acid coatings of superparamagnetic iron oxide nanoparticles: oleic, lauric, and myristic acids. We characterize the particles magnetically and structurally and study their potential for resonance imaging, magnetic hyperthermia, and labeling for biosensing in lateral flow immunoassays. We found that the myristic acid sample reported a large r2 relaxivity, superior to existing iron-based commercial agents. For magnetic hyperthermia, a significant specific absorption rate value was obtained for the oleic sample. Finally, the lauric acid sample showed promising results for nanolabeling.

10.
Curr Med Sci ; 41(6): 1052-1064, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1588743

ABSTRACT

The ongoing Coronavirus disease 19 pandemic has likely changed the world in ways not seen in the past. Neutralizing antibody (NAb) assays play an important role in the management of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak. Using these tools, we can assess the presence and duration of antibody-mediated protection in naturally infected individuals, screen convalescent plasma preparations for donation, test the efficacy of immunotherapy, and analyze NAb titers and persistence after vaccination to predict vaccine-induced protective effects. This review briefly summarizes the various methods used for the detection of SARS-CoV-2 NAbs and compares their advantages and disadvantages to facilitate their development and clinical application.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Serological Testing/trends , COVID-19 Vaccines/pharmacology , Humans , Immunization, Passive , Neutralization Tests/trends , Pandemics/prevention & control , COVID-19 Serotherapy
11.
J Infect ; 84(3): 355-360, 2022 03.
Article in English | MEDLINE | ID: covidwho-1560123

ABSTRACT

BACKGROUND: There are an abundance of commercially available lateral flow assays (LFAs) that detect antibodies to SARS-CoV-2. Whilst these are usually evaluated by the manufacturer, externally performed diagnostic accuracy studies to assess performance are essential. Herein we present an evaluation of 12 LFAs. METHODS: Sera from 100 SARS-CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR) positive participants were recruited through the FASTER study. A total of 105 pre-pandemic sera from participants with other infections were included as negative samples. RESULTS: At presentation sensitivity against RT-PCR ranged from 37.4 to 79% for IgM/IgG, 30.3-74% for IgG, and 21.2-67% for IgM. Sensitivity for IgM/IgG improved ≥ 21 days post symptom onset for 10/12 tests. Specificity ranged from 74.3 to 99.1% for IgM/IgG, 82.9-100% for IgG, and 75.2-98% for IgM. Compared to the EuroImmun IgG enzyme-linked immunosorbent assay (ELISA), sensitivity and specificity ranged from 44.6 to 95.4% and 85.4-100%, respectively. CONCLUSION: There are many LFAs available with varied sensitivity and specificity. Understanding the diagnostic accuracy of these tests will be vital as we come to rely more on the antibody status of a person moving forward, and as such manufacturer-independent evaluations are crucial.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Sensitivity and Specificity
12.
J Immunol Methods ; 496: 113096, 2021 09.
Article in English | MEDLINE | ID: covidwho-1349521

ABSTRACT

Serology or antibody tests for COVID-19 are designed to detect antibodies (mainly Immunoglobulin M (IgM) and Immunoglobulin G (IgG) produced in response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) infection. In this study, 30 lateral flow immunoassays were tested using serum or plasma from patients with confirmed SARS CoV-2 infection. Negative serological controls were accessed from a well-characterised bank of sera which were stored prior to February 2020. Operational characteristics and ease of use of the assays are reported. 4/30 (13%) of kits (Zheihang Orient Gene COVID-19 IgG/IgM, Genrui Novel Coronavirus (2019-nCoV) IgG/IgM, Biosynex COVID-19 BSS IgG/IgM, Boson Biotech 2019-nCoV IgG/IgM) were recommended for SAHPRA approval based on kit sensitivity. Of these, only the Orientgene was recommended by SAHPRA in August 2020 for use within the approved national testing algorithm while the remaining three received limited authorization for evaluation. All kits evaluated work on the same basic principle of immunochromatography with minor differences noted in the shape and colour of cartridges, the amount of specimen volume required and the test duration. Performance of the lateral flow tests were similar to sensitivities and specificities reported in other studies. The cassettes of the majority of kits evaluated (90%) detected both IgG and IgM. Only 23% of kits evaluated contained all consumables required for point-of-care testing. The study highlights the need for thorough investigation of kits prior to implementation.


Subject(s)
Antibodies, Viral/isolation & purification , COVID-19 Serological Testing/instrumentation , COVID-19/diagnosis , Immunoassay/instrumentation , Reagent Kits, Diagnostic/statistics & numerical data , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Serological Testing/statistics & numerical data , Humans , Immunoassay/statistics & numerical data , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunoglobulin M/isolation & purification , Point-of-Care Testing/statistics & numerical data , RNA, Viral/blood , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
13.
Biosensors (Basel) ; 11(7)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1323109

ABSTRACT

The feasibility of using Superparamagnetic Iron Oxide Nanoparticles (SPIONs) encapsulated by lipid-polymer nanoparticles as labels in lateral flow immunoassays (LFIA) was studied. First, nanoparticles were synthesized with average diameters between 4 and 7 (nm) through precipitation in W/O microemulsion and further encapsulated using lipid-polymer nanoparticles. Systems formulated were characterized in terms of size and shape by DLS (Nanozetasizer from Malvern) and TEM. After encapsulation, the average size was around (≈20 and 50 nm). These controlled size agglomerates were tested as labels with a model system based on the biotin-neutravidin interaction. For this purpose, the encapsulated nanoparticles were conjugated to neutravidin using the carbodiimide chemistry, and the LFIA was carried out with a biotin test line. The encapsulated SPIONs showed that they could be promising candidates as labels in LFIA test. They would be useful for immunomagnetic separations, that could improve the limits of detection by means of preconcentration.


Subject(s)
Immunoassay , Magnetic Iron Oxide Nanoparticles , Biosensing Techniques , Lipids , Polymers/chemistry
14.
Kidney Med ; 3(1): 54-59.e1, 2021.
Article in English | MEDLINE | ID: covidwho-1065667

ABSTRACT

RATIONALE & OBJECTIVE: A number of serologic tests for immunoglobulin G (IgG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are now commercially available, including multiple lateral flow immunoassays (LFIAs), which have the advantage of being inexpensive and easy to use, without the reliance on laboratory facilities. However, data on the development of humoral immunity to SARS-CoV-2 in patients with kidney disease is limited, and the utility of an LFIA to test for antibodies in these patients has not been assessed. STUDY DESIGN: Observational study. SETTING & PARTICIPANTS: 60 patients (40 hemodialysis and 20 kidney transplant recipients) with SARS-CoV-2 infection confirmed by viral reverse transcriptase-polymerase chain reaction (RT-PCR) testing and 88 historic negative-control samples (collected before September 2019). TEST: A commercially available LFIA to test for SARS-CoV-2 IgG in patients with infection confirmed by viral RT-PCR testing. OUTCOMES: Sensitivity and specificity of the LFIA to detect SARS-CoV-2 IgG in dialysis patients and transplant recipients. RESULTS: 56/58 (96.6%) patients (38/39 hemodialysis and 18/19 transplant recipients) tested positive for SARS-CoV-2 IgG. 5/7 (71.4%) patients who were negative on preliminary testing had detectable IgG when retested more than 21 days postdiagnosis. Median times to first and second tests after diagnosis were 17 (interquartile range, 15-20) and 35 (interquartile range, 30-39) days, respectively. Calculation of test characteristics gave sensitivity of 96.6% (95% CI, 88.3%-99.4%) and specificity of 97.7% (95% CI, 92.0-99.6%). LIMITATIONS: Possible exposure to other beta-coronaviruses that may cross-react with the antigen used in the LFIA cannot be excluded. CONCLUSIONS: Symptomatic dialysis patients and transplant recipients commonly develop an immune response against SARS-CoV-2 infection that can be detected using an LFIA. Used diligently, an LFIA could be used to help screen the dialysis populations or confirm exposure on a patient level, especially in facilities in which laboratory resources are limited.

15.
AIMS Microbiol ; 6(3): 280-304, 2020.
Article in English | MEDLINE | ID: covidwho-782237

ABSTRACT

Technologies based on lateral flow immunoassay (LFIA), known in some countries of the world as immunochromatographic tests, have been successfully used for the last six decades in diagnostics of many diseases and conditions as they allow rapid detection of molecular ligands in biosubstrates. The popularity of these diagnostic platforms is constantly increasing in healthcare facilities, particularly those facing limited budgets and time, as well as in household use for individual health monitoring. The advantages of these low-cost devices over modern laboratory-based analyzers come from their availability, opportunity of rapid detection, and ease of use. The attractiveness of these portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as with the easy visual readout of results. These qualities explain the growing popularity of LFIA in developing countries, when applied at small hospitals, in emergency situations where screening and monitoring health condition is crucially important, and as well as for self-testing of patients. These tools have passed the test of time, and now LFIA test systems are fully consistent with the world's modern concept of 'point-of-care testing', finding a wide range of applications not only in human medicine, but also in ecology, veterinary medicine, and agriculture. The extensive opportunities provided by LFIA contribute to the continuous development and improvement of this technology and to the creation of new-generation formats. This review will highlight the modern principles of design of the most widely used formats of test-systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as the current achievements and prospects of the LFIA technology. The latest innovations are aimed at improving the analytical performance of LFIA platforms for the diagnosis of bacterial and viral infections, including COVID-19.

16.
Emerg Microbes Infect ; 9(1): 2157-2168, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-780276

ABSTRACT

This multicenter, retrospective study included 346 serum samples from 74 patients with coronavirus disease 2019 (COVID-19) and 194 serum samples from non-COVID-19 patients to evaluate the performance of five anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests, i.e. two chemiluminescence immunoassays (CLIAs): Roche Elecsys® Anti-SARS-CoV-2 Test (Roche Test) and Abbott SARS-CoV-2 IgG (Abbott Test), and three lateral flow immunoassays (LFIAs): Wondfo SARS-CoV-2 Antibody Test (Wondfo Test), ASK COVID-19 IgG/IgM Rapid Test (ASK Test), and Dynamiker 2019-nCoV IgG/IgM Rapid Test (Dynamiker Test). We found high diagnostic sensitivities (%, 95% confidence interval [CI]) for the Roche Test (97.4%, 93.4-99.0%), Abbott Test (94.0%, 89.1-96.8%), Wondfo Test (91.4%, 85.8-94.9%), ASK Test (97.4%, 93.4-99.0%), and Dynamiker Test (90.1%, 84.3-94.0%) after >21 days of symptom onset. Meanwhile, the diagnostic specificity was 99.0% (95% CI, 96.3-99.7%) for the Roche Test, 97.9% (95% CI, 94.8-99.2%) for the Abbott Test, and 100.0% (95% CI, 98.1-100.0%) for the three LFIAs. Cross-reactivity was observed in sera containing anti-cytomegalovirus (CMV) IgG/IgM antibodies and autoantibodies. No difference was observed in the time to seroconversion detection of the five serological tests. Specimens from patients with COVID-19 pneumonia demonstrated a shorter seroconversion time and higher chemiluminescent signal than those without pneumonia. Our data suggested that understanding the dynamic antibody response after COVID-19 infection and performance characteristics of different serological test are crucial for the appropriate interpretation of serological test result for the diagnosis and risk assessment of patient with COVID-19 infection.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Immunoassay/methods , Luminescent Measurements/methods , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Adult , Aged , Antibodies, Viral/blood , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Cross Reactions/immunology , Female , Humans , Immunoassay/standards , Luminescent Measurements/standards , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Reproducibility of Results , SARS-CoV-2 , Seroconversion , Serologic Tests , Severity of Illness Index , Taiwan/epidemiology
17.
Eur J Clin Microbiol Infect Dis ; 39(12): 2289-2297, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-716316

ABSTRACT

Lateral flow immunoassays (LFIA) for rapid detection of specific antibodies (IgM and IgG) against SARS-CoV-2 in different human specimens have been developed in response to the pandemic. The aim of this study is to evaluate three immunocromathographic assays (Sienna®, Wondfo® and Prometheus®) for detection of antibodies against SARS-CoV-2 in serum samples, considering RT-qPCR as a reference. A total of 145 serum samples from 145 patients with clinical suspicion of COVID-19 were collected: all of the samples were tested with Sienna®, 117 with Wondfo® and 89 with Prometheus®. The overall results of sensitivity, specificity, positive predictive value and negative predictive value obtained were as follows: 64.4%, 75%, 85.5% and 47.8% with Sienna®; 45.2%, 81.8%, 80.5% and 47.4% with Wondfo® and 75.5%, 12.5%, 51.4% and 29.4% with Prometheus®. The accuracy of the test for Sienna®, Wondfo® and Prometheus® was 67.6%, 59% and 47.2%, with a prevalence of COVID-19 of 69.7%, 62.4% and 55.1% respectively. Sensitivity of the three tests (Sienna®, Wondfo® and Prometheus® respectively) along the three different stages was 36.6%, 18.8% and 68.6% in the early stage (first week); 81.3%, 74.1% and 90.9% in the intermediate stage (second week) and 100%, 83.3% and 100% in the late stage (third week). The results demonstrate that even though Prometheus® presented a high sensitivity, the specificity was notably lower than the other two tests. Sienna® showed the greatest contrast between sensitivity and specificity, achieving the best accuracy, followed by Wondfo®. The sensitivity of the three ICT assays was higher in late stages of the disease.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Chromatography, Affinity/methods , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Case-Control Studies , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , False Positive Reactions , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Reagent Kits, Diagnostic/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL